Thank you entirely much for downloading molecular chemistry of the transition elements an introductory course. Maybe you have knowledge that, people have see numerous times for their favorite books similar to this molecular chemistry of the transition elements an introductory course, but stop going on in harmful downloads.

Rather than enjoying a fine ebook gone a cup of coffee in the afternoon, on the other hand they juggled behind some harmful virus inside their computer. molecular chemistry of the transition elements an introductory course is simple in our digital library an online access to it is set as public appropriately you can download it instantly. Our digital library saves in merged countries, allowing you to acquire the most less latency epoch to download any of our books subsequently this one. Merely said, the molecular chemistry of the transition elements an introductory course is universally compatible subsequent to any devices to read.

Molecular Chemistry of the Transition Elements-François Mathey 1996-11-21 Using a systematic and theoretical approach, this outstanding textbook offers a succinct introduction to the underlying principles of organometallic chemistry--with a strong emphasis on reactions mechanisms. It links
theory with the chemical properties of the compounds, enabling students to classify the variety of compounds and to understand the basic reaction mechanisms of diverse classes of compounds. Chapters with selected applications help students to transfer the theoretical knowledge to real life chemistry. Contains numerous examples.

Molecular Orbitals of Transition Metal Complexes - Yves Jean 2005-03-24 This book starts with the most elementary ideas of molecular orbital theory and leads the reader to an understanding of the electronic structure, geometry and reactivity of transition metal complexes. The pedagogical aim is to give the student a theoretical method of analysis which relies on some simple ideas (symmetry and overlap), applicable to problems of varying complexity.

Elements - François Mathey 1996-12-09 Using a systematic and theoretical approach, this outstanding textbook offers a succinct introduction to the underlying principles of organometallic chemistry—with a strong emphasis on reaction mechanisms. It links theory with the chemical properties of the compounds, enabling students to classify the variety of compounds and to understand the basic reaction mechanisms of diverse classes of compounds. Chapters with selected applications help students to transfer the theoretical knowledge to real life chemistry. Contains numerous examples.

Organometallic Chemistry - F. Mathey 1993-12-01

Transition Metals in Supramolecular Chemistry - Jean-Pierre Sauvage 2008-04-30 Perspectives in Supramolecular Chemistry will relate recent developments and new exciting
approaches in supramolecular chemistry. In supramolecular chemistry, our aim is to understand molecular chemistry beyond the covalent bond - the series will concentrate on goal-orientated supramolecular chemistry. Perspectives in Supramolecular Chemistry will reflect research which develops supramolecular structures with specific new properties, such as recognition, transport and simulation of biosystems or new materials. The series will cover all areas from theoretical and modelling aspects through organic and inorganic chemistry and biochemistry to materials, solid-state and polymer sciences reflecting the many and varied applications of supramolecular structures in modern chemistry. Transition Metals in Supramolecular Chemistry Edited by Jean-Pierre Sauvage, Université Louis Pasteur, Strasbourg, France The chemistry of weak forces and non-covalent interactions as pioneered by Pedersen, Lehn and Cram is considered to be the origin of modern supramolecular chemistry. 30 years ago transition metals and their complexes were not regarded as important to this science. Transition Metals in Supramolecular Chemistry clearly demonstrates that today, transition metal complexes are routinely used to build large multicomponent architectures which display new and exciting applications including molecular switches, liquid crystals, and molecular magnets. Contents * Ligand and Metal Control of Self-Assembly in Supramolecular Chemistry * Bistability in Iron (II) Spin-Crossover Systems: A Supramolecular Function * Luminescent Sensors with and for Transition Metals * The Chirality of Polynuclear Transition Metal Complexes * Design and Serendipity in the Synthesis of Polynuclear Compounds of the 3d-metals * Rotaxanes: From Random to Transition Metal-Templated Threading of Rings at the Molecular Level * Metallomesogens - Supramolecular Organisation of Metal Complexes in Fluid Phases * Self-Assembly of Interlocked Structures with Cucurbituril Metal Ions and Metal Complexes Reflecting contemporary science, Transition Metals in Supramolecular Chemistry will inspire scientists and students interested in coordination chemistry, magnetochemistry, molecular sensors
and switches, liquid crystals and artificial systems.

Molecular Electronic Structures of Transition Metal Complexes II

David Michael P. Mingos 2012-01-11

T. Ziegler: A Chronicle About the Development of Electronic Structure Theories for Transition Metal Complexes.

B.T Sutcliffe: Chemistry as a “Manifestation of Quantum Phenomena” and the Born–Oppenheimer Approximation?

R.S. Berry and B.M. Smirnov: The Phase Rule: Beyond Myopia to Understanding.

Transition Metal Organometallic Chemistry

Francois Mathey 2013-02-01

This book serves as a concise guide to essential topics in Transition Metal Organometallic Chemistry for senior undergraduate and graduate students; it blends qualitative theoretical approach with experimental description of the facts. Its content emphasizes on the orbital description of M-L bonds; the electronic structures of the main types of organometallic complexes (ML2 to ML6); main types of organometallic reactions; organometallic compound synthesis, analytical characterization and the reactivity and lastly the applications of transition metals in homogeneous catalysis.

Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry

A. Veillard 2011-09-26

Over the last twenty years, developments of the ab initio methodologies and of the computing capacities...
have progressively turned quantum chemistry into a predictive tool for molecular systems involving only light elements. The situation appears less advanced for systems containing transition metal elements where specific difficulties arise, like those linked to the quasi-degeneracy of the lowest atomic states. Correlation effects, which are important only for quantitative accuracy in the treatment of molecules made of light elements, need sometimes to be considered even for a qualitative description of transition metals systems (like the multiple metal-metal bond). The treatment of atoms of a high atomic number has necessitated the development of model potential methods. These difficulties exacerbate for systems containing several transition atoms a correct description of the dichromium molecule Cr₂ still represents a challenge to quantum chemists. Yet many advances have been made recently in the theoretical treatment of these systems, despite the fact that our understanding still remains disparate with a variety of models and methodologies used more or less successfully (one-electron models, explicitly correlated ab initio methods, density functional formalisms).

For these reasons, a NATO Advanced Research Workshop was organized to review in detail the state-of-the-art techniques and at the same time the most common applications. These encompass many fields including the spectroscopy of diatomics and small aggregates, structure and reactivity problems in organometallic chemistry, the cluster surface analogy with its implications for heterogeneous catalysis and the description of extended structures.

Spectra, Thermodynamics, and Molecular Chemistry of Some Divalent Transition Metal Chloro-complexes in Hydrothermal Solution to 300 Degrees - Nicolas John Susak 1982

Chirality in Transition Metal Chemistry - Hani Amouri 2008-11-20 Chirality in Transition Metal Chemistry is an essential introduction to this
increasingly important field for students and researchers in inorganic chemistry. Emphasising applications and real-world examples, the book begins with an overview of chirality, with a discussion of absolute configurations and system descriptors, physical properties of enantiomers, and principles of resolution and preparation of enantiomers. The subsequent chapters deal with the specifics of chirality as it applies to transition metals. Some reviews of Chirality in Transition Metal Chemistry "...useful to students taking an advanced undergraduate course and particularly to postgraduates and academics undertaking research in the areas of chiral inorganic supramolecular complexes and materials." Chemistry World, August 2009 “...the book offers an extremely exciting new addition to the study of inorganic chemistry, and should be compulsory reading for students entering their final year of undergraduate studies or starting a Ph.D. in structural inorganic chemistry.” Applied Organometallic Chemistry Volume 23, Issue 5, May 2009 “...In conclusion the book gives a wonderful overview of the topic. It is helpful for anyone entering the field through systematic and detailed introduction of basic information. It was time to publish a new and topical text book covering the important aspect of coordination chemistry. It builds bridges between Inorganic, organic and supramolecular chemistry. I can recommend the book to everybody who is interested in the chemistry of chiral coordination compounds.” Angew. chem. Volume 48, Issue 18, April 2009 About the Series Chirality in Transition Metal Chemistry is the latest addition to the Wiley Inorganic Chemistry Advanced Textbook series. This series reflects the pivotal role of modern inorganic and physical chemistry in a whole range of emerging areas such as materials chemistry, green chemistry and bioinorganic chemistry, as well as providing a solid grounding in established areas such as solid state chemistry, coordination chemistry, main group chemistry and physical inorganic chemistry.

Spectra, Thermodynamics and Molecular
Chemistry of Some Divalent Transition Metal Chloro-complexes in Hydrothermal Solution to 300 Degrees C-Nicholas John Susak 1981

Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry-A. Veillard 1986-05-31 Over the last twenty years, developments of the ab initio methodologies and of the computing capacities have progressively turned quantum chemistry into a predictive tool for molecular systems involving only light elements. The situation appears less advanced for systems containing transition metal elements where specific difficulties arise, like those linked to the quasi-degeneracy of the lowest atomic states. Correlation effects, which are important only for quantitative accuracy in the treatment of molecules made of light elements, need sometimes to be considered even for a qualitative description of transition metals systems (like the multiple metal-metal bond). The treatment of atoms of a high atomic number has necessitated the development of model potential methods. These difficulties exacerbate for systems containing several transition atoms a correct description of the dichromium molecule Cr2 still represents a challenge to quantum chemists. Yet many advances have been made recently in the theoretical treatment of these systems, despite the fact that our understanding still remains disparate with a variety of models and methodologies used more or less successfully (one-electron models, explicitly correlated ab initio methods, density functional formalisms). For these reasons, a NATO Advanced Research Workshop was organized to review in detail the state-of-the-art techniques and at the same time the most common applications. These encompass many fields including the spectroscopy of diatomics and small aggregates, structure and reactivity problems in organometallic chemistry, the cluster surface analogy with its implications for heterogeneous catalysis and the description of extended structures.
Introduction to Molecular Magnetism - Dante Gatteschi 2015-06-22 This first introduction to the rapidly growing field of molecular magnetism is written with Masters and PhD students in mind, while postdocs and other newcomers will also find it an extremely useful guide. Adopting a clear didactic approach, the authors cover the fundamental concepts, providing many examples and give an overview of the most important techniques and key applications. Although the focus is on lanthanide ions, thus reflecting the current research in the field, the principles and the methods equally apply to other systems. The result is an excellent textbook from both a scientific and pedagogic point of view.

Spectra, Thermodynamics, and Molecular Chemistry of Some Divalent Transition Metal Chloro-complexes in Hydrothermal Solution to 300°C - Nicholas John Susak 1981

Cluster Chemistry - Guillermo Gonzalez-Moraga 2013-11-09 Cluster chemistry is one of the recent, exciting areas of Inorganic Chemistry. The occurrence of molecular clusters, like fullerene C60, constitutes a fundamental feature
midway between the chemistry of isolated chemical compounds and that of the elements. Main features of the Cluster Chemistry of both main group and transition metal elements are treated in this book. The author highlights aspects related to the synthesis, the structure, the special bonding and the reactivity of these species. The book is written as a textbook for senior undergraduate and postgraduate students. References in tables and illustrations permit the reader to reach relevant original information. Professor Gonzalez-Moraga fills a demand for a publication appropriate for dissemination and specially for teaching this exciting subject. From the Contents: Current Concepts in Modern Chemistry - Transition Metal Cluster Chemistry - Main Group-Transition Metal Mixed Clusters - Cluster Compounds of the Main Group Elements - Synthetic Analogues of the Active Sites of Iron-Sulfur Proteins.

Molecular Modeling Basics - Jan H. Jensen 2010-04-26 Molecular modeling is becoming an increasingly important part of chemical research and education as computers become faster and programs become easier to use. The results, however, have not become easier to understand. Addressing the need for a "workshop-oriented" book, Molecular Modeling Basics provides the fundamental theory needed to understand

Transition Metals in Supramolecular Chemistry - L. Fabbrizzi 1994-10-31 Since the pioneering publications on coordination chemistry by Lehn and Pedersen in the late 1960s, coupled with the more orthodox interest from the transition metal chemists on template reactions (Busch, 1964), the field of supramolecular chemistry has grown at an astonishing rate. The use of transition metals as essential constituents of multi-component assemblies has been especially sharp in recent years, since the metals are prone to quick and reversible redox changes, and there is a wide variety of metal-ligand interactions. Such properties make supramolecular complexes of
transition metal ions suitable candidates for exploration as light–energy converters and signal processors. Transition Metals in Supramolecular Chemistry focuses on the following main topics: (1) metal controlled organization of novel molecular assemblies and shapes; (2) design of molecular switches and devices operating through metal centres; (3) supramolecular catalysts that mimic metalloenzymes; (4) metal-containing sensory reagents and supramolecular recognition; and (5) molecular materials that display powerful electronic, optoelectronic and magnetic properties.

Computational Catalysis-Aravind Asthagiri
2013-10-31 This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.

Inorganic and Organometallic Transition Metal Complexes with Biological Molecules-Kenneth Kam-Wing Lo
2016-12-30 Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells provides a complete overview of this important research area that is perfect for both newcomers and expert researchers in the field. Through concise chapters written and edited by esteemed experts, this book brings together a comprehensive treatment of the area previously only available through scattered, lengthy review articles in the literature. Advanced topics of research are covered, with particular focus on recent advances in the biological applications of transition metal complexes, including inorganic medicine, enzyme inhibitors, antiparasital agents, and biological imaging reagents. Geared toward researchers and students who seek an introductory overview of the field, as well as researchers working in advanced areas Focuses on the interactions of inorganic and organometallic transition metal complexes with biological molecules and live cells Foscuses on the fundamentals and their potential therapeutic
Photoprocesses in Transition Metal Complexes, Biosystems and Other Molecules. Experiment and Theory-E. Kochanski 2012-12-06 The scope of this paper is to recall fundamental notions of the molecular spectroscopy and dynamics, necessary for discussion of photophysical and photochemical processes in condensed phases. We will thus treat in a more detailed way the specific features which are important for molecular systems strongly interacting with their environment. Other aspects such as the time evolution of isolated molecules, single-level excitation and state-to-state chemistry, important for the gas-phase photophysics are omitted. We start (Sec.2) with a brief description of radiative processes (light absorption and emission) in molecules. In the quantum-mechanical treatment of this problem, the appropriate basis is that of so-called zero-order states, corresponding to the traditional scheme of electronic states (singlets, doublets, triplets etc.) and vibrational levels belonging to each state. The important point will be deduction of selection rules for most radiative transitions. At this stage all molecular states are considered as stationary states. In order to treat the breakdown of simple selection rules and non-radiative transitions between individual molecular states, it is necessary to take into account the mechanisms coupling the zero-order states (Sec.3). We will first focus on intramolecular coupling effects and then discuss the solvent effects on intramolecular relaxation processes. The problem of the non-radiative transfer of the electronic energy between different molecules - closely related to that of the energy dissipation within a single molecule will be treated in Sec.4.
Organometallic chemistry belongs to the most rapidly developing area of chemistry today. This is due to the fact that research dealing with the structure of compounds and chemical bonding has been greatly intensified in recent years. Additionally, organometallic compounds have been widely utilized in catalysis, organic synthesis, electronics, etc. This book is based on my lectures concerning basic organometallic chemistry for fourth and fifth year chemistry students and on my lectures concerning advanced organometallic chemistry and homogeneous catalysis for Ph.D. graduate students. Many recent developments in the area of organometallic chemistry as well as homogeneous catalysis are presented. Essential research results dealing with a given class of organometallic compounds are discussed briefly. Results of physicochemical research methods of various organometallic compounds as well as their synthesis, properties, structures, reactivities, and applications are discussed more thoroughly. The selection of tabulated data is arbitrary because, often, it has been impossible to avoid omissions. Nevertheless, these data can be very helpful in understanding properties of organometallic compounds and their reactivities. All physical data are given in SI units; the interatomic distances are given in pm units in figures and tables. I am indebted to Professor S. A. Duraj for translating and editing this book. His remarks, discussions, and suggestions are greatly appreciated. I also express gratitude to Virginia E. Duraj for editing and proofreading.

This book covers different aspects of Inorganic Chemistry in 10 chapters with up-to-date coverage. Some topics include VSEPR theory, delocalized p-bonding in polyatomic molecules, metal clusters and their bonding, stability constants of metal complexes, magnetochemistry, mechanism of inorganic reactions, and molecular orbital (MO) approach of bonding in transition metals. Safe and economical inorganic experiments at UG Levels.
The Chemistry of Coordination Complexes and Transition Metals-P.L. Soni 2021-05-14
This book covers all important nomenclature, theories of bonding and stereochemistry of coordination complexes. The authors have made an effort to inscribe the ideas knowledge, clearly and in an interesting way to benefit the readers. The complexities of Molecular Orbital theory have been explained in a very simple and easy manner. It also deals with transition and inner transition metals. Conceptually, all transition and inner transition elements form complexes which have definite geometry and show interesting properties. General and specific methods of preparation, physical and chemical properties of each element have been discussed at length. Group wise study of elements in d-block series have been explained. Important compounds, complexes and organometallic compounds of metals in different oxidation states have been given explicitly. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.

Molecular Geometry-Alison Rodger 2014-05-16
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and transition metal clusters. The last chapter tackles the consequences of small, local variations in geometry. The text will be of great use to chemists who primarily deal with the properties of molecules and atoms.
Molecular Clusters - Thomas Fehlner

2007-07-05 Clusters can be viewed as solids at the nano-scale, yet molecular cluster chemistry and solid state chemistry have traditionally been considered as separate topics. This treatment has made it conceptually difficult to appreciate commonalities of structure and bonding between the two. Using analogous models, this is the first book to form a connecting bridge. Although the focus is on clusters, sufficient attention is paid to solid-state compounds at each stage of the development to establish the interrelationship between the two topics. Comprehensive coverage of cluster types by composition, size and ligation, is provided, as is a synopsis of selected research. Written in an accessible style and highly illustrated to aid understanding, this book is suitable for researchers in inorganic chemistry, physical chemistry, materials science, and condensed matter physics.

The Organometallic Chemistry of the Transition Metals - Robert H. Crabtree

2014-04-21 Fully updated and expanded to reflect recent advances, the sixth edition of this bestselling text provides students and professional chemists with a comprehensive introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications. Increased focus is given to organic synthesis applications, nanoparticle science, and green chemistry. This edition features: New sections on Multifunctional Ligands, Oxidation Catalysis, and Green Chemistry Expanded discussion on topics from the fifth edition: Supramolecular Chemistry, N-Heterocyclic Carbenes, Coupling Reactions, Organometallic Materials, Applications to Organic Synthesis, and Bioorganometallic Chemistry End-of-chapter problems and their solutions

Concepts in Transition Metal Chemistry -
Eleanor Crabb 2010 The chemistry of the transition metals is a vital part of undergraduate courses in inorganic chemistry and is an essential background for bioinorganic chemistry. This teaching text, together with the accompanying Periodic Table DVD-ROM, provides an introduction to the transition metals, examining the behaviour of the metals and their aqueous ions and complexes. The book begins, largely using interactive activities and video on the DVD, by introducing the reader to the chemistry of the first-row transition elements in different oxidation states, in particular +2 and +3, and their relative stability. This is followed by a study of coordination chemistry. Later chapters look at theories of metal-ligand bonding and the way models can be used to rationalise many of the properties of transition metals and their compounds, such as colour, magnetism and stereochemistry. Starting with the simple, yet powerful crystal-field approach, the book finishes with a largely pictorial treatment of molecular orbital theory. (A basic knowledge of atomic and molecular orbitals as applied to the main-Group elements is assumed.) The material in this book is designed to be used either as part of an undergraduate chemistry programme, or for self-directed study. Learning is facilitated through various key features, including: "interactive activities on the accompanying Periodic Table DVD "in-text questions with answers "full-colour diagrams "revision exercises on an associated website (www.rsc.org/metalsandlife) This book was written as part of the teaching material for the Open University course, S347 Metals and Life. An associated book, Metals and Life also published by RSC Publishing, explores the vital role that metals play in the physiology of animals and plants, and increasingly in medicine.

Molecular Chemistry of the Transition Elements-François Mathey 1996-12-09 Using a systematic and theoretical approach, this outstanding textbook offers a succinct introduction to the underlying principles of organometallic chemistry--with a strong emphasis on reactions mechanisms. It links
theory with the chemical properties of the compounds, enabling students to classify the variety of compounds and to understand the basic reaction mechanisms of diverse classes of compounds. Chapters with selected applications help students to transfer the theoretical knowledge to real life chemistry. Contains numerous examples.

Inorganic Chemistry of the Transition Elements - B. F. G. Johnson 1972-01-01 Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.

Practical Approaches to Biological Inorganic Chemistry - Robert R. Crichton 2019-09-10 Practical Approaches to Biological Inorganic Chemistry, Second Edition, reviews the use of spectroscopic and related analytical techniques to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique, including relevant theory, a clear explanation of what it is, how it works, and how the technique is actually used to evaluate biological structures. New chapters cover Raman Spectroscopy and Molecular Magnetochemistry, but all chapters have been updated to reflect the latest developments in discussed techniques. Practical examples, problems and many color figures are also included to illustrate key concepts. The book is designed for researchers and students who want to learn both the basics and more advanced
aspects of key methods in biological inorganic chemistry. Presents new chapters on Raman Spectroscopy and Molecular Magnetochemistry, as well as updated figures and content throughout. Includes color images throughout to enable easier visualization of molecular mechanisms and structures. Provides worked examples and problems to help illustrate and test the reader's understanding of each technique. Written by leading experts who use and teach the most important techniques used today to analyze complex biological structures.

Organic and Bio-molecular Chemistry - Volume II - Francesco Nicotra 2009-04-14
Organic And Bio-Molecular Chemistry is the component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Organic And Bio-Molecular Chemistry in the Encyclopedia of Chemical Sciences, Engineering and Technology Resources deal with the discipline that studies the molecules of life, which are made by carbon atoms, and includes also all the synthetic compounds the skeletons of which contain carbon atoms. The first chapter describes in general terms, for not expert readers, what Organic and Bio-molecular chemistry is, the nature and behavior of organic compounds in living organisms, the importance of organic compounds in the market and in our everyday life. The subsequent chapters are organized in order to provide the reader with information on the structure, reactivity, analysis and different applications of Organic Compounds. These two volumes are aimed at the following five major target audiences: University and College students, Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.

Ligated Transition Metal Clusters in Solid-state Chemistry - Jean-François Halet 2019-08-29
This volume dedicated to the memory of Marcel Sergent who was a leader in this field for many years, addresses past achievements and recent developments in this vibrant area of research. Large classes of ligated transition metal clusters are produced either exclusively or most reliably by means of high-temperature solid-state reactions. Among them, the Chevrel-Sergent phases and related materials have generated enormous interest since their discovery in 1971. Today, these materials and their numerous derivatives still constitute a vivid area of research finding some applications not only in superconductivity, but also in catalysis, optics or thermoelectricity to mention a few.

Fundamentals of Molecular Catalysis
2003-04-02 Almost all contemporary organic synthesis involve transition metal complexes as catalysts or particular reagents. The aim of this book is to provide the reader with detailed accounts of elementary processes within molecular catalysis to allow its development and as an aid in designing novel catalytic systems. The book comprises authoritative reviews on elementary processes from experts working at the forefront of organometallic chemistry. · This is the first book that focuses on elementary processes in transition metal complexes for understanding catalytic mechanisms · Provides detailed description of elementary processes involved in catalytic cycles by experts in the field · Provides an overview of the mechanisms of various homogeneous catalyses

Transition Metals and Sulfur - A Strong Relationship for Life-Martha Sosa Torres
2020-04-06 Metal-Sulfur clusters play an essential role in living organisms through the unique character of sulfur-metal bonding. The new volume in prestigious Metal Ions in Life Sciences explores different transition metal complexes with sulfur, their biosynthesis and biological functions in regulation of gene expression, catalysis of important metabolic reactions and protein structure arrangement.
Molecular Design of Ordered Transition Metal Thin Film Interfaces by Coordination Chemistry and Self-assembly - David M. Sarno

The Chemistry and Biology of Nitroxyl (HNO) - Fabio Doctorovich

The Chemistry and Biology of Nitroxyl (HNO) provides first-of-its-kind coverage of the intriguing biologically active molecule called nitroxyl, or azanone per IUPAC nomenclature, which has been traditionally elusive due to its intrinsically high reactivity. This useful resource provides the scientific basis to understand the chemistry, biology, and technical aspects needed to deal with HNO. Building on two decades of nitric oxide and nitroxyl research, the editors and authors have created an indispensable guide for investigators across a wide variety of areas of chemistry (inorganic, organic, organometallic, biochemistry, physical, and analytical); biology (molecular, cellular, physiological, and enzymology); pharmacy; and medicine. This book begins by exploring the unique molecule’s structure and reactivity, including important reactions with small molecules, thiols, porphyrins, and key proteins, before discussing chemical and biological sources of nitroxyl. Advanced chapters discuss methods for both trapping and detecting nitroxyl by spectroscopy, electrochemistry, and fluorescent inorganic cellular probing. Expanding on the compound’s foundational chemistry, this book then explores its molecular physiology to offer insight into its biological implications, pharmacological effects, and practical issues. Presents the first book on HNO (nitroxyl or azanone), an increasingly important molecule in biochemistry and pharmaceutical research. Provides a valuable coverage of HNO’s chemical structure and significant reactions, including practical guidance on working with this highly reactive molecule. Contains high quality content from recognized experts in both industry and academia.
The Electronic Transitions of Molecular Oxygen - Mikkel Bregnhøj 2018-12-15 This book presents the fundamentals and the state of the art of the photophysics of molecular oxygen. The author examines optical transitions between the lowest-lying electronic states in molecular oxygen and how these transitions respond to perturbation, either from an organic molecule or from the plasmon field of a metal nanoparticle. We live on a planet filled with light and oxygen. The interaction between these two components forms the basis of excited state chemistry spanning the fields of synthetic organic chemistry, materials chemistry, molecular biology, and photodynamic treatment of cancer. Still, the fundamental ways in which oxygen is affected by light is an active subject of research and is continually being developed and rationalized. In this book, readers will learn that singlet oxygen, the excited state of oxygen that exhibits unique chemical reactivity, can be selectively made via direct optical excitation of oxygen in a sensitizer-free system. Readers will also discover that this approach can perturb living cells differently depending on the singlet oxygen “dose”.

Basic Principles of Organic Chemistry - John D. Roberts 1977 Introduction what is organic chemistry all about?; Structural organic chemistry the shapes of molecules functional groups; Organic nomenclature; Alkanes; Stereoisomerism of organic molecules; Bonding in organic molecules atomic-orbital models; More on nomenclature compounds other than hydrocarbons; Nucleophilic substitution and elimination reactions; Separation and purification identification of organic compounds by spectroscopic techniques; Alkenes and alkynes. Ionic and radical addition reactions; Alkenes and alkynes; Oxidation and reduction reactions; Acidity or alkynes.